125=-16t^2+85t+(1/12)

Simple and best practice solution for 125=-16t^2+85t+(1/12) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 125=-16t^2+85t+(1/12) equation:



125=-16t^2+85t+(1/12)
We move all terms to the left:
125-(-16t^2+85t+(1/12))=0
We add all the numbers together, and all the variables
-(-16t^2+85t+(+1/12))+125=0
We multiply all the terms by the denominator
-(-16t^2+85t+(+1+125*12))=0
We calculate terms in parentheses: -(-16t^2+85t+(+1+125*12)), so:
-16t^2+85t+(+1+125*12)
We add all the numbers together, and all the variables
-16t^2+85t+1501
Back to the equation:
-(-16t^2+85t+1501)
We get rid of parentheses
16t^2-85t-1501=0
a = 16; b = -85; c = -1501;
Δ = b2-4ac
Δ = -852-4·16·(-1501)
Δ = 103289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-85)-\sqrt{103289}}{2*16}=\frac{85-\sqrt{103289}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-85)+\sqrt{103289}}{2*16}=\frac{85+\sqrt{103289}}{32} $

See similar equations:

| -3b+2b=6+5b | | 16x^2-106x-105=0 | | 2b-2=b+2 | | 9y-5=11 | | 5-3x=-4-6x | | -5(4x+3)=20 | | -10+4x=-6+2x | | 3(v+6)=0 | | -2(7-4k)=27 | | w^2+4w+1=49 | | -5-4v=-4v+2v+5 | | -2(v-3)=-12 | | -6p+2p=-p-12 | | 2,000=2.50v-500 | | -1(6m)=-19 | | -10+6k=-6+2k+3k | | 2m^2-9m+8=0 | | -(1+6m=-19 | | 11.6+38a=-16.9 | | X+22+x+25+x-15=180 | | 25-2x=14 | | m/4-2-m=1/4 | | -8(m+8)=-96 | | 0.1x^2-0.7+1.2=0 | | -1/4=8x | | 2(2m-5)=-38 | | 3p-p+2=-2p+2p | | -3(3-2x)=39 | | 2x+4=-11-4x+3x | | 4k+1=10+k | | 7(8+2n)=-28 | | -6+5x=3x-6 |

Equations solver categories